
Selective Retrieval-Augmented Infilling for
Repository-Level Code Completion

Di Wu, Wasi Ahmad, Dejiao Zhang

2023/10/16

A million-dollar question

• How to fill in a hole in an arbitrary repository?

• Code language models (LMs) have shown promising performance.

Challenge: the knowledge gap

Code LMs
User

Repositories
Pre-training

Data

In-Repository APIs

Cross-file Dependencies

Training Testing

Public Knowledge Repo-Specific Knowledge

Logic

PL Features

PL & NL Correlations Development Conventions

• A successful system (RepoCoder, EMNLP 2023)

Retrieval-Augmented Generation (RAG)

Code LM

Code snippet from some_other_file.py
image = np.array(image).astype(np.float32) / 255.0
image = 2.0 * images - 1.0
image = torch.from_numpy(image)
elif isinstance(image[0], torch.Tensor):
image = torch.cat(image, dim=0)
return image
...
def process(image):

 # preprocess image
 if isinstance(image, (PIL.Image.Image, np.ndarray)):

 image = [image]

 # normalize image

 image -= self._mean
 image /= self._stddev

 # convert to tensor
 image = torch.tensor(image, dtype=torch.float32)

 return image

1. Query with
left context

2. Augment cross-
file context chunks

In-Repo
Retriever

3. Generate code
completion

Improving the paradigm

• Issue: existing works treat right contexts as cross-file information.
• Failure to capture the code immediately following the hole.

• Fixed-size chunks may fail to capture the entire set of useful information.

• Many LMs are already trained on fill-in-the-middle, e.g., StarCoder [1].

• We propose directly give both left and right contexts in the prompt.

[1] StarCoder: may the source be with you! Li et al., arXiv 2023.

Improving the paradigm

• We propose directly providing both left and right contexts in the prompt.

prompt for CodeGen [1]

[CFC] RC LC

prompt for StarCoder [2]

<fim_prefix> [CFC] LC <fim_suffix> RC <fim_middle>

* LC = left context, RC = right context, CFC = retrieved cross-file context chunks

[1] CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis, Nijkamp et al., ICLR 2023.
[2] StarCoder: may the source be with you! Li et al., arXiv 2023.

Evaluation

• Repo-level code generation tasks from RepoEval [1]:
• Line completion

• API completion

• Function completion

• Metrics
• Exact match (EM, upper bound for correctness)

• Edit similarity (ES, user experience)

• Unit test pass rate (UT, correctness of function completion)

[1] RepoCoder: Repository-Level Code Completion Through Iterative Retrieval and Generation, Zhang et al., EMNLP 2023.

Results

• Providing RC generally improves the
completion performance.

• StarCoder, pre-trained on FIM, is better at
leveraging the RC.

• We will focus on the Retrieval-Augmented
Infilling (RAI) setup with StarCoder.

The 80-20 rule for RAI

• Is retrieval beneficial for every instance?

• We find 80% of the retrievals could be avoided with no performance loss.

Fail -> Pass No Change Pass -> Fail

53 385 17

function_completion

Model performance change (ut)

Selective Retrieval-Augmented Infilling

• Since the gain from retrieval is sparse, it is important to understand:
• When to retrieve?
• How to maximally leverage the retrieved context?

• Therefore, we formulate the novel task of Selective RAI.

• Always decide whether CFC is required for the infilling task.

• No → directly use (LC, RC) to prompt the code LM.

• Yes → retrieve CFC and prompt the LM with (LC, RC, CFC)

Evaluating Selective RAI

• Selective RAI system are evaluated according to the two questions

• The performance-budget trade-off
• A superior system should achieve the same level of performance with

less retrieval budget.

• Ratio of performance gain and loss on the retrieval instances
• A superior system should exhibit performance improvement on all the

instances where it decides to retrieve.

Leveraging Retrievers to solve Selective RAI

• A naïve baseline: use the retriever’s similarity to make selections.
• We select top k% instances to perform retrieval-augmented infilling, while

performing in-file infilling for the rest (100-k)% instances.

• Surprisingly, this strategy saves at least 40% retrievals on StarCoder 16B.

Limitations

• Practical considerations

• Finding a proper similarity threshold could be challenging in practice.

• Retrieval is required to calculate the similarity score, which is expensive.

• Performance considerations

• Ignores the case where the model already makes good predictions without CFC.

• Prompts with CFCs are OOD for code LMs, possibly harming the performance.

• Therefore, we must also adapt the LM itself to better solve Selective RAI.

Adapting Code LMs for Selective RAI

• Our problems at hand:

• How to utilize the information from the LM side for S-RAI?

• How to avoid the negative effects of the retrieved context in S-RAI systems?

• How to avoid performing the retrieval before making the selective decision?

• Our proposal: self-triggered retrieval

• Let the LM selectively request for the CFC after observing the in-file context.

• selectively request for the CFC after observing the in-file context?

• Our insight: this is a form of self-planning, or self-evaluation.

• Training a calibrated LM to self-evaluate is viable and investigated by prior work [1].

• For our task, the ground truth can be easily labelled.

15

<fim_prefix> left_context <fim_suffix> right_context <fim_middle> ?

Observed Context

Do I know the
answer here?

Can I answer it
given more CFC?

[1] Language Models (Mostly) Know What They Know, Kadavath et al., arXiv 2022.

Adapting Code LMs for Selective RAI

Infilling with Self-Trigged Retrieval

• Two new tokens: <end_suffix> and <cfc_info>

• The model self-evaluates whether it needs extra context for better infilling.

• If so, it predicts <cfc_info>, and we provide CFC ending with <fim_middle>.

• If not, we directly append <fim_middle>.

• One relaxation: we use the probability of <cfc_info> as the decision criteria.

<fim_prefix> left_context <fim_suffix> right_context <end_suffix> <cfc_info> CFC <fim_middle> completion

Prompt

Self-
assessment

Provided only
on request

Infilling with Self-Trigged Retrieval

• Training

• A multi-task objective

• Self-assessment loss: Pr(<cfc_info> | prompt)

• Code completion loss: Pr(completion | prompt + optional CFC)

• We do not supervise the prompt, CFC tokens, or <fim_middle>

<fim_prefix> left_context <fim_suffix> right_context <end_suffix> <cfc_info> CFC <fim_middle> completion

Prompt

Self-
assessment

Provided only
on request

Infilling with Self-Trigged Retrieval

• Training data creation process (simplified)
1. Sample a hole to fill in and record the ground truth and the in-file context.

2. Run repo-level retrieval and record the top-3 relevant code chunks as the CFC.

3. Run inference with a code LM twice

<fim_prefix> left_context <fim_suffix> right_context <fim middle> → completion_in_file

<fim_prefix> left_context <fim_suffix> right_context CFC <fim middle> → completion_with_cfc

4. Label via edit similarity evaluation

Label  ES(ground truth, completion_in_file) < ES(ground truth, completion_with_cfc)

• If label = True, train on (1) requesting for retrieval and (2) retrieval-augmented infilling.

• Otherwise, train on (1) not requesting for retrieval, and (2) infilling without retrieval.

Infilling with Self-Trigged Retrieval

• Advantages
• Self-triggered retrieval allows a model to smoothly self-switch between RAI and infilling.

• Learning self-evaluation without losing generality.

• In addition, fine-tuning on RAI to avoid negative retrieval.

• No extra latency if retrieval is not triggered.

• Our paradigm exploits existing data in a self-supervised manner, with low labeling costs.

• More training details
• We create 350k chunk and function completion instances using 20k repos.

• We adapt StarCoderBase-1B/3B models and call them Repoformer-1B/3B.

• The two losses are assigned equal weights.

• 2 epochs with LR 1e-5, BSZ 512, 100 warmup steps, and linear LR decay.

• Baseline: prompting StarCoderBase-1B with left, right, and cross-file context.

• Self-selecting cases for RAI, Repoformer-1B outperforms the baseline with very small retrieval budget.

• ~8% for line/API completion, ~40% for function completion.

• ~5% overall performance gain for line/API completion and ~13% gain for function completion.

Repoformer-1B Evaluations

• Repoformer makes roughly-calibrated decisions for retrieval but is often over-confident.

• Probability of ES increase – calculated by prompting the model twice.

• Limitation: Repoformer cannot predict the gain in UT pass rate very well.

Repoformer-1B Evaluations

• Repoformer is better at leveraging the retrieved CFCs.

• We compare the performance gain from CFCs of Repoformer vs. StarCoderBase on the instances self-

selected by Repoformer. (RepoEval API Completion)

Repoformer-1B Evaluations

© 2023, Amazon Web Services, Inc. or its affiliates.

• Repoformer is better at leveraging the retrieved CFCs.

• We compare the performance gain from CFCs of Repoformer vs. StarCoderBase on the instances self-

selected by Repoformer. (RepoEval Function Completion)

Repoformer-1B Evaluations

Performance with tuned threshold

• We tune the threshold on a validation dataset and compare the performance.

model policy
API Completion Function Completion

threshold % retrieval ES threshold % retrieval ES

StarCoder 1B

- - 0% 66.54 - 0% 47.65

retriever sim 0.622 75% 69.23 0.397 99% 55.71

- - 100% 69.17 - 100% 55.64

Repoformer 1B

- - 0% 68.14 - 0% 50.68

retriever sim 0.563 88% 72.18 0.110 100% 57.30

self selection 0.245 55% 72.98 0.081 90% 57.41

- - 100% 72.02 - 100% 57.30

Limitations & Extensions

• Experiments are only on Python.

• Edit Similarity as the training signal.

• Stronger results could be obtained if the “on-policy” setting is considered by
further training Repoformer with RL.

• Repoformer itself can be a planning + drafting tool for much larger code LMs.

• Repository-specific selective policies could be considered.

Discussion

• Our work resonates with many concurrent efforts to make retrieval-augmented
and tool-augmented LMs more efficient [1, 2, 3] and robust [4].
• Perspective 1: selective retrieval as extreme context compression [1, 2, 3]

• Perspective 2: selective retrieval as single-tool planning [5, 6]

• With proper formulation, a modest-sized LM can be trained as the planner.

• Our method also extends the self-evaluation scheme to a new task [6, 7]
• We explore embedding simple self-evaluation in language modeling.

[1] RECOMP: Improving Retrieval-Augmented LMs with Compression and Selective Augmentation, Xu et al., arXiv 2023.
[2] Self-Knowledge Guided Retrieval Augmentation for Large Language Models, Wang et al., arXiv 2023.
[3] When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories, Mallen et al., ACL 2023.
[4] Making Retrieval-Augmented Language Models Robust to Irrelevant Context, Ran et al., arXiv 2023.
[5] Toolformer: Language Models Can Teach Themselves to Use Tools, Schick et al., arXiv 2023.
[6] Guiding Language Model Reasoning with Planning Tokens, Wang et al., arXiv 2023.
[7] Language Models (Mostly) Know What They Know, Kadavath et al., arXiv 2022.

Summary

• The 80-20 rule: retrieval augmentation often does not improve the repository-
level code completion performance.

• The suggestion: considering selective retrieval is strongly advised.

• The solutions:

• Retriever’s scores provide useful hints on whether a CFC chunk is useful.

• Self-supervised adaptation enables LMs to self-trigger retrieval.

	Slide 1: Selective Retrieval-Augmented Infilling for Repository-Level Code Completion
	Slide 2: A million-dollar question
	Slide 3: Challenge: the knowledge gap
	Slide 4: Retrieval-Augmented Generation (RAG)
	Slide 5: Improving the paradigm
	Slide 6: Improving the paradigm
	Slide 7: Evaluation
	Slide 8: Results
	Slide 9: The 80-20 rule for RAI
	Slide 10: Selective Retrieval-Augmented Infilling
	Slide 11: Evaluating Selective RAI
	Slide 12: Leveraging Retrievers to solve Selective RAI
	Slide 13: Limitations
	Slide 14: Adapting Code LMs for Selective RAI
	Slide 15: Adapting Code LMs for Selective RAI
	Slide 16: Infilling with Self-Trigged Retrieval
	Slide 17: Infilling with Self-Trigged Retrieval
	Slide 18: Infilling with Self-Trigged Retrieval
	Slide 19: Infilling with Self-Trigged Retrieval
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Performance with tuned threshold
	Slide 25: Limitations & Extensions
	Slide 26: Discussion
	Slide 27: Summary

