Selective Retrieval-Augmented Infilling for
Repository-Level Code Completion

Di Wu, Wasi Ahmad, Dejiao Zhang
2023/10/16

A million-dollar guestion

* How to fill in a hole in an arbitrary repository?

* Code language models (LMs) have shown promising performance.

a3

main.js

// Parse a CSV string of songs and return the list (position, originalChartDate, artist, title).
// lgnore lines starting with #.
function parseCSV(csvString) {
const songs = [];
const lines = csvString.split('\n');
for (let 1 = @; i < lines.length; i++) {
const line = lines[i];
if (line.startsWith('#')) continue;
const [position, originalChartDate, artist, title] = line.split(',');
songs.push({
position: parselnt(position),

1
2
3
4
5
[3)
7
8
)

originalChartDate,
artist,
title
1);
}
return songs;

}

@ Amazon CodeWhisperer

Challenge: the knowledge gap

Pre-training Training Testing User

Repositories

Code LMs

In-Repository APIs

Cross-file Dependencies

Development Conventions

- e e e o e . -

Public Knowledge Repo-Specific Knowledge

Retrieval-Augmented Generation (RAG)

e A successful system (RepoCoder, EMNLP 2023)

Code snippet from some_other file.py
image = np.array(image).astype(np.float32) / 255.0
image = 2.0 * images - 1.0

#

#

2. Augment cross-
image = torch.from_numpy(image)

#

#

#

file context chunks

elif isinstance(image[@], torch.Tensor):
image = torch.cat(image, dim=0)

return image
_________________ J i In-Repo

Retriever

def process(image): n
preprocess image
if isinstance(image, (PIL.Image.Image, np.ndarray)): |

image = [image] P !
1. Query with
normalize image left context
image -= self. mean

image /= self._stddev

convert to tensor
image = torch.tensor(image, dtype=torch.float32)

3. Generate code
completion

return image

Improving the paradigm

* |ssue: existing works treat right contexts as cross-file information.
* Failure to capture the code immediately following the hole.
* Fixed-size chunks may fail to capture the entire set of useful information.
 Many LMs are already trained on fill-in-the-middle, e.g., StarCoder [1].

* We propose directly give both left and right contextsin the prompt.

[1] StarCoder: may the source be with you! Li et al., arXiv 2023.

Improving the paradigm

* We propose directly providing both left and right contextsin the prompt.

prompt for CodeGen [1]
[CFC] RC LC

prompt for StarCoder [2]
<fim prefix> [CFC] LC <fim suffix> RC <fim middle>

* LC = left context, RC = right context, CFC = retrieved cross-file context chunks

[1] CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis, Nijkamp etal., ICLR 2023.
[2] StarCoder: may the source be with you! Li et al., arXiv 2023.

Evaluation

* Repo-level code generation tasks from RepoEval [1]:
* Line completion
* APl completion
* Function completion

* Metrics

e Exact match (EM, upper bound for correctness)
 Edit similarity (ES, user experience)
e Unit test passrate (UT, correctness of function completion)

[1] RepoCoder: Repository-Level Code Completion Through Iterative Retrieval and Generation, Zhang et al., EMNLP 2023.

Results

|
(%}

~J
(=]

* Providing RC generally improves the
completion performance.

[=3]
L%,

Performance (ES)
[=)]
(]

u
L%

e StarCoder, pre-trained on FIM, is better at
leveraging the RC.

45

o
(=]

* We will focus on the Retrieval-Augmented
Infilling (RAI) setup with StarCoder.

Performance (UT)
w
[¥,]

w
o

25

RepoEval APl Completion

CodeGen 16B StarCoder 16B

RepoEval Function Completion

CodeGen 16B StarCoder 16B

i B LC + RC B LC + CFC B LC+ RC + CFC

The 80-20 rule for RAI

- Is retrieval beneficial for every instance?

- We find 80% of the retrievals could be avoided with no performance loss.

~
s \\ ~
A
\ S o
\ ~
\ > ~
\ S ~
\ S o
\ ~
\ s ~ <
N\ api_completion ~
1200 === ===5 =
1 Sis
1000 : | SO
1000 4 S
I I SO
8oo 1l ! RS function_completion
800 I I S -
" I Ny——————— e ———————
S 5001 g 8007 I Fail -> Pass No Change Pass -> Fail
g 3 I '
I ! 53 385 17
400 1 400 4, I
I L
200 200 : : Model performance change (ut)
1 1
0- 04 i
40 -70 50 -30 -10 0 10 30 50 70 90 80 -70 50 30 <10 O 10 30 50 70 80

Model performance change {es) Model performance change (es)

Selective Retrieval-Augmented Infilling

Since the gain from retrieval is sparse, it is important to understand:
When to retrieve?
How to maximally leverage the retrieved context?

Therefore, we formulate the novel task of Selective RAI.

Always decide whether CFC is required for the infilling task.
No - directly use (LC, RC) to prompt the code LM.
Yes - retrieve CFC and prompt the LM with (LC, RC, CFC)

Evaluating Selective RA

Selective RAI system are evaluated according to the two questions

The performance-budget trade-off
- A superior system should achieve the same level of performance with
less retrieval budget.

Ratio of performance gain and loss on the retrieval instances
A superior system should exhibit performance improvement on all the
instances where it decides to retrieve.

Leveraging Retrievers to solve Selective RAI

- A naive baseline: use the retriever’s similarity to make selections.
- We select top k% instances to perform retrieval-augmented infilling, while

Overall performance (es)

performing in-file infilling for the rest (100-k)% instances.

- —_—
- N F—

—
————— < i B -
-
—_— ~ -
- ~ - -
- - e
_ - - S e
-
Line Completion i APl Completion \| Fumction Completion |
] 1 0.750 I. . 1 I . 1
o - _ _ T e . f i
:I Ei ; T lrl--p" m 0.745 v " .'-'A',_, ‘,f'rd_}:-\.u‘rt M—J”‘Jf‘h“h . T J
/ Lol WE A i : —
d.ﬁ_-mvfm] _.-'-' ff T z”‘-_.l_ N I_'_'
r,j e i w0740 f roeid II_."' = - = J
s Ny P v a) I\ v E g
.73 — bt fr ™ 2 0.40
i T g 0.735 | -, 2 J.LI' J—
& | e o IFR Yy rr
£ - [A [:
0.78 / T / /') T .ﬂ.
il = .25 i f 5038 ™
f! e .'-ﬂT
] ! ¥ i
0.77 [& 0.720 i S T
! iy . |
I | ll"'d 0.3
071" i -
- !
0.76 ¥ N
1 0.710
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0
Percentage of cases to perform retrieval Percentage of cases to perform retrieval Percentage of cases to perform retrieval

Limitations

« Practical considerations
- Finding a proper similarity threshold could be challenging in practice.

- Retrieval is required to calculate the similarity score, which is expensive.
- Performance considerations
- lgnores the case where the model already makes good predictions without CFC.

- Prompts with CFCs are OOD for code LMs, possibly harming the performance.

- Therefore, we must also adapt the LM itself to better solve Selective RAI.

Adapting Code LMs for Selective RAI

Our problems at hand:
How to utilize the information from the LM side for S-RAI?
How to avoid the negative effects of the retrieved contextin S-RAIl systems?
How to avoid performing the retrieval before making the selective decision?

Our proposal: self-triggered retrieval
Let the LM selectively request for the CFC after observing the in-file context.

Adapting Code LMs for Selective RAl

- selectively request for the CFC after observing the in-file context?

- Ourinsight: this is a form of self-planning, or self-evaluation.

. Do | know the
4
,’1 answer here?
<fim_prefix> left_context <fim_suffix> right_context <fim_middle> 2< ______________
l ' I "\, Canlanswerit
| .
Observed Context given more CFC?

- Training a calibrated LM to self-evaluate is viable and investigated by prior work [1].

- Forour task, the ground truth can be easily labelled.

[1] Language Models (Mostly) Know What They Know, Kadavath et al., arXiv 2022.

15

Infilling with Self-Trigged Retrieval

« Two new tokens: <end suffix> and <cfc_info>

. assessment | on request

I

<fim_prefix> left _context <fim suffix> right context <end suffix> <cfc_info> CFC <fim middle> completion

| J
1

Prompt

The model self-evaluates whether it needs extra context for better infilling.
If so, it predicts <cfc_info>, and we provide CFC ending with <fim middle>.
If not, we directly append <fim middle>.

- One relaxation: we use the probability of <cfc_info> as the decision criteria.

Infilling with Self-Trigged Retrieval

« Training

. assessment | on request

I

<fim_prefix> left _context <fim suffix> right context <end suffix> <cfc_info> CFC <fim middle> completion

| J
1

Prompt

- A multi-task objective
- Self-assessment loss: Pr(<cfc_info> | prompt)
- Code completion loss: Pr(completion | prompt + optional CFC)
- We do not supervise the prompt, CFC tokens, or <fim middle>

Infilling with Self-Trigged Retrieval

Training data creation process (simplified)

1. Sample a hole to fill in and record the ground truth and the in-file context.

2. Run repo-level retrieval and record the top-3 relevant code chunks as the CFC.,
3. Run inference with a code LM twice

<fim prefix> left _context <fim_suffix> right context <fim middle> - completion_in file
<fim prefix> left context <fim_suffix> right context CFC <fim middle> —> completion with cfc
4. Label via edit similarity evaluation

Label < ES(ground truth, completion in file) < ES(ground truth, completion with cfc)

- If label = True, train on (1) requesting for retrieval and (2) retrieval-augmented infilling.
- Otherwise, train on (1) not requesting for retrieval, and (2) infilling without retrieval.

Infilling with Self-Trigged Retrieval

* Advantages

 Self-triggered retrieval allows a model to smoothly self-switch between RAl and infilling.
* Learning self-evaluation withoutlosing generality.
* In addition, fine-tuning on RAIl to avoid negative retrieval.
* No extra latencyif retrieval is not triggered.

e Our paradigm exploits existing data in a self-supervised manner, with low labeling costs.

* More training details
* We create 350k chunk and function completion instances using 20k repos.

* We adapt StarCoderBase-1B/3B models and call them Repoformer-1B/3B.
* The two losses are assigned equal weights.

e 2 epochs with LR 1e-5, BSZ 512, 100 warmup steps, and linear LR decay.

Repoformer-1B Evaluations

« Baseline: prompting StarCoderBase-1B with left, right, and cross-file context.

« Self-selecting cases for RAI, Repoformer-1B outperforms the baseline with very small retrieval budget.
 ~8% for line/API completion, ~40% for function completion.

 ~5% overall performance gain for line/API completion and ~13% gain for function completion.

Line Completion APl Completion ns Function Completion

[
o
[}

[

(=]

o
st
(=]
A

110
104

[
o
et

103 105

it
=1
N

102 100

(=
(=]
ey

101
85

[
(=
(=]

100

Performance compared to baseline (%)
Performance compared to baseline (%)
Perfermance compared to baseline (%)

pi=1
k=3

an

o
L=

&

0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10
Percentage of cases to perform retrieval Percentage of cases to perform retrieval Percentage of cases to perform retrieval

Repoformer-1B Evaluations

« Repoformer makes roughly-calibrated decisions for retrieval but is often over-confident.
« Probability of ES increase — calculated by prompting the model twice.

« Limitation: Repoformer cannot predict the gain in UT pass rate very well.

Line Completion APl Completion Funetion Completion Function Completion
100 100 12
0

10
2 &0 g 80 3 w0 3
-] m m =)
E - E g

g% £ £ £ 8
W wn B0 w60 -
akd a0 by b =

k-] =] k] T 6
= =y =y =
= W z W z]

2 2 .g a2 4
g £ £ £

20 20
10 2
, 1 - n :

0, 0.2y (0.2,04) (0.4.06) (0.6.0.8) (0.8 1) (0,0.2) (0.2,04) (04, 06 (06 08 (0.8 1) (0, 0.2} (0.2, 04) (0.4, 06) (0.6 08 (048 1)

(0,0.2) (0.2,04) (04, 06) (0.6 08 (08 1)
Probability of =cfc_info=

Probability of <cfc_info= Probability of <cfc_info= Probability of =cfc_info=

Repoformer-1B Evaluations

 Repoformer is better at leveraging the retrieved CFCs.

« We compare the performance gain from CFCs of Repoformer vs. StarCoderBase on the instances self-
selected by Repoformer. (RepoEval APl Completion)

StarCoderBase 1B Repoformer 1B
100

BO 80

1
|
|
|
I
|
|
60 |
60 1
= € I
= = 1
S S I
|
|
|
20 20 1
|
I I
-9 -50 -30 10 30 90 -70 50 -30 10 320 50 70 90

Ferfurmance change (Edit Similarity) Performance change (Edit Similarity)

Repoformer-1B Evaluations

« Repoformer is better at leveraging the retrieved CFCs.

« We compare the performance gain from CFCs of Repoformer vs. StarCoderBase on the instances self-
selected by Repoformer. (RepoEval Function Completion)

StarCoderBase 1B Repoformer 1B

25
23

20

Count
=
L

Count

10 10

¥

0 Al

90 -70 50 30 -10 0 10 30 50 70 90 90 -70 50 -30 -10 0O 10 30 50 70 90
Performance change (Edit Similarity) Performance change (Edit Similarity)

0

Performance with tuned threshold

* We tune the threshold on a validation dataset and compare the performance.

olic API Completion Function Completion

i

PO"Y | threshold | % retrieval | ES_threshold| % retrieval | ES
- 0%

66.54 0% 47.65

StarCoder 1B retriever sim 0.622 75% 69.23 0.397 99% 55.71
- - 100% 69.17 - 100% 55.64

- - 0% 68.14 - 0% 50.68

retriever sim 0.563 88% 72.18 0.110 100% 57.30

Repoformer 1B _
self selection 0.245 55% 72.98 0.081 90% 57.41

= = 100% 72.02 = 100% 57.30

Limitations & Extensions

* Experiments are only on Python.
e Edit Similarity as the training signal.

» Stronger results could be obtained if the “on-policy” settingis considered by
further training Repoformer with RL.

e Repoformer itself can be a planning + drafting tool for much larger code LMs.

* Repository-specific selective policies could be considered.

Discussion

* Our work resonates with many concurrent efforts to make retrieval-augmented
and tool-augmented LMs more efficient [1, 2, 3] and robust [4].
* Perspective 1: selective retrieval as extreme context compression [1, 2, 3]
* Perspective 2: selective retrieval as single-tool planning [5, 6]
* With proper formulation, a modest-sized LM can be trained as the planner.

 Our method also extends the self-evaluation scheme to a new task [6, 7]
* We explore embedding simple self-evaluation in language modeling.

[1] RECOMP: Improving Retrieval-Augmented LMs with Compression and Selective Augmentation, Xu et al., arXiv 2023.

[2] Self-Knowledge Guided Retrieval Augmentation for Large Language Models, Wang et al., arXiv 2023.

[3] When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories, Mallen et al., ACL 2023.
[4] Making Retrieval-Augmented Language Models Robust to Irrelevant Context, Ran et al., arXiv 2023.

[5] Toolformer: Language Models Can Teach Themselves to Use Tools, Schick et al., arXiv2023.

[6] Guiding Language Model Reasoning with Planning Tokens, Wang et al., arXiv 2023.

[7] Language Models (Mostly) Know What They Know, Kadavath et al., arXiv 2022.

Summary

- The 80-20 rule: retrieval augmentation often does not improve the repository-
level code completion performance.

- The suggestion: considering selective retrieval is strongly advised.

- The solutions:
- Retriever’s scores provide useful hints on whether a CFC chunk is useful.
Self-supervised adaptation enables LMs to self-trigger retrieval.

	Slide 1: Selective Retrieval-Augmented Infilling for Repository-Level Code Completion
	Slide 2: A million-dollar question
	Slide 3: Challenge: the knowledge gap
	Slide 4: Retrieval-Augmented Generation (RAG)
	Slide 5: Improving the paradigm
	Slide 6: Improving the paradigm
	Slide 7: Evaluation
	Slide 8: Results
	Slide 9: The 80-20 rule for RAI
	Slide 10: Selective Retrieval-Augmented Infilling
	Slide 11: Evaluating Selective RAI
	Slide 12: Leveraging Retrievers to solve Selective RAI
	Slide 13: Limitations
	Slide 14: Adapting Code LMs for Selective RAI
	Slide 15: Adapting Code LMs for Selective RAI
	Slide 16: Infilling with Self-Trigged Retrieval
	Slide 17: Infilling with Self-Trigged Retrieval
	Slide 18: Infilling with Self-Trigged Retrieval
	Slide 19: Infilling with Self-Trigged Retrieval
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Performance with tuned threshold
	Slide 25: Limitations & Extensions
	Slide 26: Discussion
	Slide 27: Summary

