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A million-dollar guestion

* How to fill in a hole in an arbitrary repository?

* Code language models (LMs) have shown promising performance.
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main.js

// Parse a CSV string of songs and return the list (position, originalChartDate, artist, title).
// lgnore lines starting with #.
function parseCSV(csvString) {
const songs = [];
const lines = csvString.split('\n');
for (let 1 = @; i < lines.length; i++) {
const line = lines[i];
if (line.startsWith('#')) continue;
const [position, originalChartDate, artist, title] = line.split(',');
songs.push({
position: parselnt(position),
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originalChartDate,
artist,
title
1);
}
return songs;

}
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Challenge: the knowledge gap
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Retrieval-Augmented Generation (RAG)

e A successful system (RepoCoder, EMNLP 2023)

Code snippet from some_other file.py
image = np.array(image).astype(np.float32) / 255.0
image = 2.0 * images - 1.0

#

#

# 2. Augment cross-
# image = torch.from_numpy(image)

#

#

#

file context chunks

elif isinstance(image[@], torch.Tensor):
image = torch.cat(image, dim=0)

return image
_________________ J i In-Repo

Retriever

def process(image): n
# preprocess image
if isinstance(image, (PIL.Image.Image, np.ndarray)): |

image = [image] P !
1. Query with
# normalize image left context
image -= self. mean

image /= self._stddev

# convert to tensor
image = torch.tensor(image, dtype=torch.float32)

3. Generate code
completion

return image




Improving the paradigm

* |ssue: existing works treat right contexts as cross-file information.
* Failure to capture the code immediately following the hole.
* Fixed-size chunks may fail to capture the entire set of useful information.
 Many LMs are already trained on fill-in-the-middle, e.g., StarCoder [1].

* We propose directly give both left and right contextsin the prompt.

[1] StarCoder: may the source be with you! Li et al., arXiv 2023.



Improving the paradigm

* We propose directly providing both left and right contextsin the prompt.

# prompt for CodeGen [1]
[CFC] RC LC

# prompt for StarCoder [2]
<fim prefix> [CFC] LC <fim suffix> RC <fim middle>

* LC = left context, RC = right context, CFC = retrieved cross-file context chunks

[1] CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis, Nijkamp etal., ICLR 2023.
[2] StarCoder: may the source be with you! Li et al., arXiv 2023.



Evaluation

* Repo-level code generation tasks from RepoEval [1]:
* Line completion
* APl completion
* Function completion

* Metrics

e Exact match (EM, upper bound for correctness)
 Edit similarity (ES, user experience)
e Unit test passrate (UT, correctness of function completion)

[1] RepoCoder: Repository-Level Code Completion Through Iterative Retrieval and Generation, Zhang et al., EMNLP 2023.



Results
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* Providing RC generally improves the
completion performance.

[=3]
L%,

Performance (ES)
[=)]
(]

u
L%

e StarCoder, pre-trained on FIM, is better at
leveraging the RC.
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* We will focus on the Retrieval-Augmented
Infilling (RAI) setup with StarCoder.
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The 80-20 rule for RAI

- Is retrieval beneficial for every instance?

- We find 80% of the retrievals could be avoided with no performance loss.
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Selective Retrieval-Augmented Infilling

Since the gain from retrieval is sparse, it is important to understand:
When to retrieve?
How to maximally leverage the retrieved context?

Therefore, we formulate the novel task of Selective RAI.

Always decide whether CFC is required for the infilling task.
No - directly use (LC, RC) to prompt the code LM.
Yes - retrieve CFC and prompt the LM with (LC, RC, CFC)



Evaluating Selective RA

Selective RAI system are evaluated according to the two questions

The performance-budget trade-off
- A superior system should achieve the same level of performance with
less retrieval budget.

Ratio of performance gain and loss on the retrieval instances
A superior system should exhibit performance improvement on all the
instances where it decides to retrieve.



Leveraging Retrievers to solve Selective RAI

- A naive baseline: use the retriever’s similarity to make selections.
- We select top k% instances to perform retrieval-augmented infilling, while

Overall performance (es)

performing in-file infilling for the rest (100-k)% instances.
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Limitations

« Practical considerations
- Finding a proper similarity threshold could be challenging in practice.

- Retrieval is required to calculate the similarity score, which is expensive.
- Performance considerations
- lgnores the case where the model already makes good predictions without CFC.

- Prompts with CFCs are OOD for code LMs, possibly harming the performance.

- Therefore, we must also adapt the LM itself to better solve Selective RAI.



Adapting Code LMs for Selective RAI

Our problems at hand:
How to utilize the information from the LM side for S-RAI?
How to avoid the negative effects of the retrieved contextin S-RAIl systems?
How to avoid performing the retrieval before making the selective decision?

Our proposal: self-triggered retrieval
Let the LM selectively request for the CFC after observing the in-file context.



Adapting Code LMs for Selective RAl

- selectively request for the CFC after observing the in-file context?

- Ourinsight: this is a form of self-planning, or self-evaluation.

. Do | know the
4
,’1 answer here?
<fim_prefix> left_context <fim_suffix> right_context <fim_middle> 2<  ______________
l ' I "\, Canlanswerit
| .
Observed Context  given more CFC?

- Training a calibrated LM to self-evaluate is viable and investigated by prior work [1].

- Forour task, the ground truth can be easily labelled.

[1] Language Models (Mostly) Know What They Know, Kadavath et al., arXiv 2022.
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Infilling with Self-Trigged Retrieval

« Two new tokens: <end suffix> and <cfc_info>

. assessment | on request

I

<fim_prefix> left _context <fim suffix> right context <end suffix> <cfc_info> CFC <fim middle> completion

| J
1

Prompt

The model self-evaluates whether it needs extra context for better infilling.
If so, it predicts <cfc_info>, and we provide CFC ending with <fim middle>.
If not, we directly append <fim middle>.

- One relaxation: we use the probability of <cfc_info> as the decision criteria.



Infilling with Self-Trigged Retrieval

« Training

. assessment | on request

I

<fim_prefix> left _context <fim suffix> right context <end suffix> <cfc_info> CFC <fim middle> completion

| J
1

Prompt

- A multi-task objective
- Self-assessment loss: Pr(<cfc_info> | prompt)
- Code completion loss: Pr(completion | prompt + optional CFC)
- We do not supervise the prompt, CFC tokens, or <fim middle>



Infilling with Self-Trigged Retrieval

Training data creation process (simplified)

1. Sample a hole to fill in and record the ground truth and the in-file context.

2. Run repo-level retrieval and record the top-3 relevant code chunks as the CFC.,
3. Run inference with a code LM twice

<fim prefix> left _context <fim_suffix> right context <fim middle> - completion_in file
<fim prefix> left context <fim_suffix> right context CFC <fim middle> —> completion with cfc
4. Label via edit similarity evaluation

Label < ES(ground truth, completion in file) < ES(ground truth, completion with cfc)

- If label = True, train on (1) requesting for retrieval and (2) retrieval-augmented infilling.
- Otherwise, train on (1) not requesting for retrieval, and (2) infilling without retrieval.



Infilling with Self-Trigged Retrieval

* Advantages

 Self-triggered retrieval allows a model to smoothly self-switch between RAl and infilling.
* Learning self-evaluation withoutlosing generality.
* In addition, fine-tuning on RAIl to avoid negative retrieval.
* No extra latencyif retrieval is not triggered.

e Our paradigm exploits existing data in a self-supervised manner, with low labeling costs.

* More training details
* We create 350k chunk and function completion instances using 20k repos.

* We adapt StarCoderBase-1B/3B models and call them Repoformer-1B/3B.
* The two losses are assigned equal weights.

e 2 epochs with LR 1e-5, BSZ 512, 100 warmup steps, and linear LR decay.



Repoformer-1B Evaluations

« Baseline: prompting StarCoderBase-1B with left, right, and cross-file context.

« Self-selecting cases for RAI, Repoformer-1B outperforms the baseline with very small retrieval budget.
 ~8% for line/API completion, ~40% for function completion.

 ~5% overall performance gain for line/API completion and ~13% gain for function completion.
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Repoformer-1B Evaluations

« Repoformer makes roughly-calibrated decisions for retrieval but is often over-confident.
« Probability of ES increase — calculated by prompting the model twice.

« Limitation: Repoformer cannot predict the gain in UT pass rate very well.
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Repoformer-1B Evaluations

 Repoformer is better at leveraging the retrieved CFCs.

« We compare the performance gain from CFCs of Repoformer vs. StarCoderBase on the instances self-
selected by Repoformer. (RepoEval APl Completion)
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Repoformer-1B Evaluations

« Repoformer is better at leveraging the retrieved CFCs.

« We compare the performance gain from CFCs of Repoformer vs. StarCoderBase on the instances self-
selected by Repoformer. (RepoEval Function Completion)
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Performance with tuned threshold

* We tune the threshold on a validation dataset and compare the performance.

olic API Completion Function Completion

i

PO"Y | threshold | % retrieval | ES_threshold| % retrieval | ES
- 0%

66.54 0% 47.65

StarCoder 1B  retriever sim 0.622 75% 69.23 0.397 99% 55.71
- - 100% 69.17 - 100% 55.64

- - 0% 68.14 - 0% 50.68

retriever sim 0.563 88% 72.18 0.110 100% 57.30

Repoformer 1B _
self selection 0.245 55% 72.98 0.081 90% 57.41

= = 100% 72.02 = 100% 57.30



Limitations & Extensions

* Experiments are only on Python.
e Edit Similarity as the training signal.

» Stronger results could be obtained if the “on-policy” settingis considered by
further training Repoformer with RL.

e Repoformer itself can be a planning + drafting tool for much larger code LMs.

* Repository-specific selective policies could be considered.



Discussion

* Our work resonates with many concurrent efforts to make retrieval-augmented
and tool-augmented LMs more efficient [1, 2, 3] and robust [4].
* Perspective 1: selective retrieval as extreme context compression [1, 2, 3]
* Perspective 2: selective retrieval as single-tool planning [5, 6]
* With proper formulation, a modest-sized LM can be trained as the planner.

 Our method also extends the self-evaluation scheme to a new task [6, 7]
* We explore embedding simple self-evaluation in language modeling.

[1] RECOMP: Improving Retrieval-Augmented LMs with Compression and Selective Augmentation, Xu et al., arXiv 2023.

[2] Self-Knowledge Guided Retrieval Augmentation for Large Language Models, Wang et al., arXiv 2023.

[3] When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories, Mallen et al., ACL 2023.
[4] Making Retrieval-Augmented Language Models Robust to Irrelevant Context, Ran et al., arXiv 2023.

[5] Toolformer: Language Models Can Teach Themselves to Use Tools, Schick et al., arXiv2023.

[6] Guiding Language Model Reasoning with Planning Tokens, Wang et al., arXiv 2023.

[7] Language Models (Mostly) Know What They Know, Kadavath et al., arXiv 2022.



Summary

- The 80-20 rule: retrieval augmentation often does not improve the repository-
level code completion performance.

-  The suggestion: considering selective retrieval is strongly advised.

- The solutions:
- Retriever’s scores provide useful hints on whether a CFC chunk is useful.
Self-supervised adaptation enables LMs to self-trigger retrieval.
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